SnO2 Nanostructures: Effect of Processing Parameters on Their Structural and Functional Properties

نویسندگان

  • Tetiana A. Dontsova
  • Svitlana V. Nagirnyak
  • Vladyslav V. Zhorov
  • Yuriy V. Yasiievych
چکیده

Zero- and 1D (one-dimensional) tin (IV) oxide nanostructures have been synthesized by thermal evaporation method, and a comparison of their morphology, crystal structure, sorption properties, specific surface area, as well as electrical characteristics has been performed. Synthesized SnO2 nanomaterials were studied by X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), N2 sorption/desorption technique, IR spectroscopy and, in addition, their current-voltage characteristics have also been measured. The single crystalline structures were obtained both in case of 0D (zero-dimensional) SnO2 powders and in case of 0D nanofibers, as confirmed by electron diffraction of TEM. It was found that SnO2 synthesis parameters significantly affect materials' properties by contributing to the difference in morphology, texture formation, changes in IR spectra of 1D structure as compared to 0D powders, increases in the specific surface area of nanofibers, and the alteration of current-voltage characteristics 0D and 1D SnO2 nanostructures. It was established that gas sensors utilizing of 1D nanofibers significantly outperform those based on 0D powders by providing higher specific surface area and ohmic I-V characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Sn Doping on Structural and Optical Properties of 2D α-MoO3 Nanostructures

Undoped and Tin (Sn) doped Molybdenum trioxide (α-MoO3) nanostructured thin films (which has lamellar (2D) structure) have been prepared using a simple and cost effective technique of spray pyrolysis on glass substrates at 450 ℃. Surface morphology, optical and structural properties of samples have been investigated using FESEM, UV-Vis spectroscopy and XRD analysis techniques, respectively. FES...

متن کامل

Computational investigation of the influence of carbon nanostructures on the properties of energetic TATB substance by DFT method

In this study, computational synthesis of carbon nanostructures' derivatives with TATB or 2,4,6-triamino-1,3,5- trinitrobenzene , which is an energetic substance in the temperature range of 300-400 K were evaluated by density functional theory method. In this regard, at the outset, the substances in the both sides of intended reactions for forming the desired products were optimized geometrical...

متن کامل

Computational investigation of the influence of carbon nanostructures on the properties of energetic TATB substance by DFT method

In this study, computational synthesis of carbon nanostructures' derivatives with TATB or 2,4,6-triamino-1,3,5- trinitrobenzene , which is an energetic substance in the temperature range of 300-400 K were evaluated by density functional theory method. In this regard, at the outset, the substances in the both sides of intended reactions for forming the desired products were optimized geometrical...

متن کامل

Investigating the Effect of Fullerene (C20) Substitution on the Structural and Energetic Properties of Tetryl by Density Functional Theory

The substitution reaction of pure, silicon doped and germanium doped fullerenes and tetryl were evaluated computationally at two configurations, in this study. For this purpose, all of the studied structures were optimized geometrically and then IR and NBO calculations were performed on them in the temperature range of 300-400 K at 10˚ intervals. The obtained negative values of Gibbs free energ...

متن کامل

Calculation of Thermodynamic Parameters of [2.4.6] Three Nitro Toluene (TNT) with Nanostructures of Fullerene and Boron Nitride Nano-cages over Different Temperatures, Using Density Functional Theory

In this study explosive substance [2.4.6] three Nitro Toluene (TNT) was attached with nanostructures of fullerene (C24) and boron nitride nano-cages (B12N12). After that using B3LYP (Becke, three-parameter, Lee-Yang-Parr), a method from density functional theory (DFT), thermodynamic parameters of TNT with foregoing nanostructures, in different conditions of temperature, were computed. To this a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017